Physics of Bose-Systems (lecturer: Dr. Andrij Rovenchak)

[4 ECTS credits]

Lectures

- 1. Introduction: History of Bose-system studies
- 2. Ideal quantum gases: Derivation of the distribution functions
- 3. Thermodynamics of the ideal Bose-gas
- 4. Ideal Bose-gas in an external field
- 5. Bose-systems with a finite number of particles
- 6. Gross–Pitaevskii equation
- 7. Bogoliubov's method of approximate second quantization
- 8. Bose-systems with strong interactions
- 9. Physical grounds of experimental techniques for cooling and trapping atoms

Seminars

- 1. Bose's original paper on the derivation of Planck's distribution
- 2. Ideal *D*-dimensional Bose-gas: density of states, phase transition temperature T_c , thermodynamic functions in the vicinity of T_c for different *D* values
- 3. Ideal Bose-gas in spherically-symmetric traps $U = U(|\mathbf{r}|)$. Two-dimensional ideal gas in the oscillator trap. Ideal gas with a power dispersion law in traps of different shapes
- 4. Finite systems in spaces with dimensionality D > 2 and D = 1. Integer partitions and microcanonical treatment of the harmonic oscillator system
- 5. Gross–Pitaevskii equation: ground state of the homogeneous hard-sphere system; excitation spectrum of a weakly-interacting Bose-gas
- 6. Bogoliubov's approach to the calculation of the excitation spectrum of a weakly-interacting Bose-gas: homogeneous systems and harmonic traps
- 7. Collective variables: Hamiltonian of and interacting Bose-system; ground state wavefunction; interacomic potentials and structure functions
- 8. Two-time temperature Green's functions. Calculations of thermodynamic functions. Excitation spectrum of a two-component bosonic mixture
- 9. Physical grounds of cooling techniques: laser cooling; Sisyphus cooling; evaporative cooling. Physical principles of trapping techniques for magnetic and magneto-optical traps

Grading plan:

Work during seminars:		10%			
Seminar reports (average):		20%			
Mid-term and final tests ($2 \times 10\%$) =		20%			
Final exam:		50%			
Total:	1	100%			
Grading scale:	90–100 = A; 81–90	= B;	71 - 80 = C;	61 - 70 = D;	51–60 = E